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We present an approach to uncertainty quantification for nuclear applica-

tions, which combines the covariance evaluation of differential cross-sections

data and the error propagation from matching a criticality experiment using a

neutron-transport calculation. We have studied the reduction in uncertainty

of 239Pu fission cross sections by using a one-dimensional neutron-transport

calculation with the PARTISN code. The evaluation of 239Pu differential

cross-section data is combined with a criticality measurement (Jezebel) us-

ing a Bayesian method. To quantify the uncertainty in such calculations, we

generate a set of random samples of the cross sections, which represents the

covariance matrix, and estimate the distribution of calculated quantities, such

as criticality. We show that inclusion of the Jezebel data reduces uncertainties

in estimating neutron multiplicity.
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of 239Pu fission cross sections by using a one-dimensional neutron-transport

calculation with the PARTISN code. The evaluation of 239Pu differential

cross-section data is combined with a criticality measurement (Jezebel) us-

ing a Bayesian method. To quantify the uncertainty in such calculations, we

generate a set of random samples of the cross sections, which represents the

covariance matrix, and estimate the distribution of calculated quantities, such

as criticality. We show that inclusion of the Jezebel data reduces uncertainties

in estimating neutron multiplicity.

I INTRODUCTION

Advanced technologies of nuclear energy applications require uncertainty quantification

(UQ) to assess the margin in a design and to validate model predictions, such as a neutron-

transport calculation for criticality. The neutron-transport calculation may have two

main sources of uncertainty, the nuclear data used and the modeling itself. When a

covariance of nuclear data is provided, the uncertainty in a calculated quantity (e.g.,

neutron multiplicity, keff , for example) can be estimated by propagating the error in

the nuclear data to the outputs of the application code. The model uncertainty is not

discussed in this paper since this is outside our scope.

Ishikawa et al.1 adjusted group cross sections and other nuclear data such as νp to

match integral data obtained from many critical systems. The adjusted cross-section

library with their covariance makes it possible to predict the uncertainty in the trans-

port calculations if the computation of the sensitivity is feasible. In general, however,

calculation of the error propagation is difficult to perform, since many application codes,

such as a neutron-transport Monte Carlo simulation codes, require tremendous computing

capabilities.
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To perform the uncertainty quantification for such calculations within a realistic com-

putational resource (time), a feasible method must be developed. One possible solution is

to perform the calculations with several perturbed cross-section sets (ensemble), then look

at the distribution of the calculated quantities. In this Monte Carlo technique, we must

be careful about the fact that the uncertainties in the cross sections are not independent,

and this information must be included into the sample set as a constraint.

The constraint is a result of nuclear data evaluation, and it is expressed as a data

covariance. For example, when cross sections are evaluated based on experimental data

having an unknown normalization, the evaluated data-correlation must be positive, be-

cause the unknown normalization error propagates to all the evaluated energy points in

a similar way. With this covariance, if the fluctuations in the cross section tend to be

larger than the averaged (unperturbed) value at a certain energy, cross sections at the

other energies also tend to be larger. Therefore, a key issue of our Monte Carlo procedure

is to properly evaluate the covariance of nuclear data.

In this study we evaluated the covariance of 239Pu fission cross section, because a large

experimental database to evaluate the covariance is available, and a straightforward appli-

cation of 239Pu fission cross section such as Jezebel — a critical assembly at LANL2, 3 —

makes it possible to validate our Monte Carlo method. In Sec. 2, the covariance for 239Pu

fission cross section is evaluated from differential measurements of the 239Pu(n, f) reac-

tion. It is known that the Los Alamos evaluated 239Pu fission cross-section data reproduce

most integral measurements very well. With a Bayesian technique4, such integral data

can be included in the covariance data to constrain the differential cross sections, which is

described in Sec. 3. In Sec. 4, we generate an ensemble of cross sections according to the

covariances, and perform a one-dimensional neutron transport calculations with this en-

semble to investigate the distribution of the neutron multiplicity keff , which is an estimate

of the uncertainty in the nuclear data application. The neutron transport calculations are

performed with the PARTISN code5. Although we limit ourselves to a computationally

fast transport calculation to demonstrate our procedure, the Monte Carlo method can be

used in any type of application codes.
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II ESTIMATION OF UNCERTAINTIES BY USING

DIFFERENTIAL EXPERIMENTAL DATA

Uncertainties in evaluated cross sections originate from the experimental data used. The

239Pu fission cross sections evaluated at LANL6 are also based on measurements of dif-

ferential data, and the uncertainties (covariance) of the cross sections can be deduced

from the experimental uncertainties. However, many of the 239Pu fission cross sections

were measured as a ratio to 235U fission cross section, which is so-called a standard cross

section7, and a choice of this standard cross section affects the evaluation of 239Pu fission

cross section and its covariance.

The standard evaluation for ENDF/B-VII has been completed recently at IAEA7, but

the final covariance data have not yet been released. Here we adopt an interim standard

data8 for 235U fission cross section for which we do not expect a large difference from the

final values. With this standard, all the ratio measurements are converted into absolute

239Pu fission cross section values.

In the IAEA standard evaluation, all existing experimental data used in the evaluation

were also examined carefully, and covariance for the measurements in each experiment

was assigned. We adopt this experimental database, together with the IAEA interim

standard cross section, to generate a covariance matrix for 239Pu fission cross section.

In this procedure, the experimental database is not the same as what we used for

239Pu fission cross section evaluation at LANL6. However, the limitation arising from this

approximation might be mitigated, because we do not use a point-wise cross section but

a group-averaged cross section in this study. Information from individual experiments is

diluted inasmuch as each group often contains a large number of experimental data points.

The 30-group structure adopted in the LANL MENDF6 multi-group data library9 is used.

The evaluated 239Pu fission cross section set has many energies to represent an exci-

tation function of fission reaction. Though the covariance data might be given for these

point-wise cross sections, a group-averaged cross section is sufficient for our uncertainty

quantification study for nuclear data applications.

The group-averaged covariance can be obtained by processing the original ENDF
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point-wise covariance data with the NJOY code system10.

It is possible to obtain the group covariance directly from the experimental data by

comparing the group-averaged cross sections with the differential measurements. We use

a simple Least-Squares fitting procedure11 with the SOK code12. The group-averaged

cross sections are compared with experimental differential cross sections in Fig. 1. The

experimental data shown here are from many authors but shown by the same symbol, for

sake of clarity.

The group-averaged cross section is denoted by a parameter vector x = (σ1, σ2, . . . , σm)t

where m is the number of groups taken to be 30 in this study. When the experimental data

y = (σ(ε1), σ(ε2), . . . , σ(εn))t are provided, the least-squares solution x0 and its covariance

matrix X are given by

x0 = XDtV−1y, (1)

and

X =
(
DtV−1D

)−1
, (2)

where V is the covariance of the experimental data taken from the IAEA evaluation, and

D is the design matrix which gives an appropriate interpolation. The covariance X must

be scaled by the ratio χ2 per degree-of-freedom.

The evaluated uncertainties for the 30-group structure cross sections are shown in

Fig. 2 by the solid line. The uncertainties obtained are 1.4% – 2.4% above the unresolved

resonance region (the boundary energy is 30 keV), and are reasonable because each data

point has typically a 2–6% uncertainty (not shown in Fig. 1), and this uncertainty is

reduced by the group-averaging procedure.

The correlation matrix, as shown in Fig. 3, reveals positive correlation coefficients

among the group cross sections. In general, the measurements have systematic errors

owing to data normalization uncertainty that come from uncertainties in the sample

thickness, detector efficiency, etc. In other words, the experimental data may have an

unknown normalization arising from those systematic errors. This systematic compo-

nent in the overall uncertainty leads to a positive correlation among the evaluated cross

sections.
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Alternatively, the group-averaged covariance can be obtained by processing the orig-

inal ENDF point-wise covariance data with the NJOY code system10, if the evaluated

covariance data are given13. The covariance data in the file are processed with NJOY

together with the ERRORJ code14, 15, which processes resonance parameter covariances,

to obtain the covariance matrix for the group cross sections1. Although this sequence

has an advantage because any group structure can be used, we used the least-squares

fitting to generate the group-averaged covariance data as mentioned above, because the

evaluated file of 239Pu fission cross section does not contain the covariance.

III INCLUSION OF INTEGRAL DATA

It is known that the 239Pu fission cross section and average number of prompt neu-

trons νp in the LANL nuclear data library predict the keff value from Jezebel very well

(C/E =0.99933). A sensitivity study was carried out for Jezebel. If we increase the 239Pu

fission cross section by 1% in the entire energy range, the calculated keff also increases

by about 1%. Recalling the fact that the uncertainties in the 239Pu fission cross section

are about 1.5% in the fast region, as shown in Fig. 2, a very simple error estimate for

the calculated keff value might also be 1.5%. This uncertainty is much larger than the

experimental uncertainty of Jezebel2, 3, which is only 0.2%.

To reduce the calculated keff uncertainty for Jezebel, we adopt a Bayesian update

technique, which combines information from differential fission data and the integral data.

In Eqs. (1) and (2), we denoted the 30-group cross sections by the vector x0 and its

estimated covariance by X. Providing new information, Jezebel keff with 0.2% uncertainty,

the posterior parameter x1 and its covariance P are given by16, 17

x1 = x0 + PCtV−1 (y − f(x0)) ,

= x0 + XCt
(
CXCt + V

)−1
(y − f(x0)) , (3)

P =
(
X−1 + CtV−1C

)−1
,

= X− XCt
(
CXCt + V

)−1
CX, (4)

where C is the sensitivity matrix, y is the Jezebel experiment, and V is the covariance of
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Jezebel experiment. In this case, there is only one experiment (keff =1.000 ± 0.2%), so

the matrix V and vector y become scalars.

The result of the neutron transport calculation using the parameter x is denoted by

f(x), which is a non-linear function. It can be linearized by the first-order Taylor-series

expansion near x0 as

y = f(x) ' f(x0) + C(x− x0). (5)

We refer to this equation as the linear approximation.

Note that Eq. (3) updates the group cross sections, and x0 and x1 are not exactly the

same. However the difference is negligible in our case.

Frankle18 obtained the sensitivity matrix C by calculating derivatives numerically.

PARTISN calculations for Jezebel keff were performed with an unperturbed and 1% per-

turbed group cross sections. The sensitivity calculation was performed only for the prod-

uct σi × νp. In this study we assume that νp has a negligible uncertainty, so that δ(σiνp)

is νp × δσi. The sensitivity coefficients obtained are shown in Fig. 2 by the dot-dashed

line. Since the neutrons in Jezebel have a very hard fast-spectrum with the peak value

near 1 MeV, the keff value is insensitive to the fission cross sections below 10 keV.

Putting the sensitivity coefficients for the 30-group fission cross sections to the Jezebel

keff value into the matrix C of Eqs. (3) and (4), the adjusted cross sections x1 and their

covariance P are calculated. Although the cross sections x0 and x1 are very similar, as

expected, the covariance matrices X (prior covariance) and P (posterior covariance) are

significantly different. The posterior uncertainties in the cross sections are shown in Fig. 2

by the dotted line. A relatively large reduction in the uncertainty is seen near 1 MeV.

The uncertainty estimated with the differential data was 2.4%, and this was reduced to

1.8% by including the integral data. In the other energy regions, however, the reduction

is not so large.

The procedure descrbed above is the same as the cross section adjustment that is a

popular technique in the nuclear reactor core calculation and dosimetry. The adjustment

of cross section always reduces the uncertainties19. The main difference of our procedure

is that the adjustment aims at obtaining a reasonable cross section set that consistent
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with the integral data. On the contrary our procedure does not change the cross section

because we know that keff calculated with the prior set is 1.0, and the change only appears

in the covariance.

While the uncertainties in the cross sections in individual groups are only modestly

reduced, the biggest benefit of including the integral constraint will be realized for sim-

ulations of similar physical setups involving 239Pu and a hard fast-neutron spectrum. A

remarkable change can be seen in the correlation matrix shown in Fig. 4, in which negative

correlations appear in the fast energy range. These negative correlations come from the

constraint imposed by the integral data. They imply that a positive fluctuation in the

cross section in one energy group will tend to be accompanied by a decrease in the cross

sections in other groups so as to keep an integral quantity constant.

IV UNCERTAINTY QUANTIFICATION OF A SIM-

ULATION USING MONTE CARLO

The posterior covariance matrix P discussed in the preceding section provides a description

of the uncertainties in the group cross sections. The posterior probability distribution for

the cross section vector x is proportional to exp{−(1/2)(x − x1)
tP−1(x − x1)}. With

this distribution, we can use a Monte-Carlo technique to estimate the uncertainty in

simulations of related physical phenomena. The general approach is to draw random

samples of x from its probability distribution, and use each sample in the simulation to

calculate its associated output. The ensemble of outputs can be used to characterize their

uncertainties. We illustrate this technique by estimating the uncertainty in the simulation

of the same Jezebel experiment we used above.

The first step in the Monte Carlo technique is to draw random samples from the prob-

ability distribution with the specified covariance matrix, either X or P given by Eqs. (2)

and (4). We first diagonalize the covariance matrix by subjecting it an eigenanalysis.

This analysis also provides a good test of the positive-definiteness of covariance matrix.

We confirmed that our covariance matrices are both positive-definite. In the eigenvector

space, the covariance matrix is diagonal, meaning the eigenvalues are uncorrelated. We
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draw 30 independent random samples from a Gaussian distribution with unit variance.

After multiplication by the square root of the eigenvalues, this vector is transformed into

the cross-section space to obtain the correlated fluctuations in the samples about the mean

value x1. The last steps are repeated again and again to obtain more random samples.

The covariance matrix P (or X) can be diagonalized as:

U−1PU = diag(λ1, λ2, . . . , λm), (6)

where λ’s are the eigenvalues of the covariance matrix P, and the matrix U contains the

eigenvector (u1i, u2i, . . . , umi, )
t for the i-th eigenvalue λi.

In the eigenvector space, there is no off-diagonal element in the covariance matrix, so

we sample the eigenvalues ξi from the Gaussian distributions with the standard deviation

of
√

λi, and the center value of zero. The distribution of ξi is given by

p(ξi)dξi =
1√
2πλi

exp

(
− ξ2

i

2λi

)
dξi, (7)

with 〈ξi〉 = 0 and 〈ξ2
i 〉 = λi.

When the sampled values ξi are provided, an element of P, pij = cov(σi, σj), can be

calculated as

pij =
∑

k

uikujkλk =
∑

k

uikujk〈ξ2
k〉

=

〈∑

k

uikujkξ
2
k

〉

=

〈∑

k

uikξk

∑

k

ujkξk

〉
. (8)

Here we used 〈uik1ξk1ujk2ξk2〉 = uik1ujk2〈ξk1ξk2〉 = 0 for k1 6= k2.

From Eq. (8),
∑

k uikξk is a deviation from an averaged cross-section when the eigen-

value ξk is sampled :

σ′i = σi + δσi = σi +
∑

k

uikξk, (9)

where σ′i can be used as the sampled set. In fact,

cov(σ′i, σ
′
j) = 〈δσiδσj〉 =

〈∑

k

uikξk

∑

k

ujkξk

〉
= pij. (10)
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Therefore the covariance of sampled cross-section set {σ′i} is equal to P.

Figure 5 shows an example of the Monte Carlo realization based on the matrix X in

Eq. (2). Two random samples (dot-dashed, and dashed lines) are shown here together

with the unperturbed cross section by the solid line. Because the matrix X has positive

correlations, the randomly-sampled cross sections tend to move in the same direction.

Such a tendency can be seen in the cross section set shown by dashed line, which is

systematically lower than the unperturbed cross section.

The Monte Carlo realization based on the matrix P in Eq. (4) is shown in Fig. 6. The

sampled cross sections look less correlated than those in Fig. 5, as we expect from the

negative correlations in the matrix P.

Before we perform a real neutron transport calculation with our ensemble, we have

simulated the keff prediction for Jezebel by using the linear approximation to PARTISN

calculations, which is expressed by Eq. (5), or more specifically given by

k
(n)
eff ' k

(0)
eff + C(xn − x0), (11)

where x0 and xn are the unperturbed and n-th sampled cross sections, respectively, and

k
(0)
eff is the calculated keff value with x0 cross section.

We have generated 1000 samples to reproduce the uncertainty distribution of keff ,

which is shown in Fig. 7. The solid histogram shows the distribution of keff when the

covariance matrix X is used. The dotted histogram is for the case of matrix P. Both

distributions are approximated well by a Gaussian of σ =0.8% and 0.2%, respectively. We

also calculated the uncertainties in keff using the standard error propagation technique,

and obtained exactly the same answers. The uncertainty in the Jezebel experiment, 0.2%,

is well reproduced by this simulation. It is clearly seen that the integral data reduce the

uncertainty in the keff prediction. From the uncertainty in the fission cross section for

239Pu, we reiterate that the uncertainty from the transport method used for the calculation

is not considered here.

As a full neutron transport calculation, we have performed the PARTISN calculation

for Jezebel with 30 samples. The result is shown in Fig. 8. Note that the width of each

histogram is different from that in Fig. 7.
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We have compared the simulated keff obtained with the linear approximation and the

real PARTISN calculation, and found that they agree up to 5 digits (the difference is less

than 0.01%). That means that if we perform the PARTISN calculations for 1000 samples,

we may obtain the same distributions in Fig. 7. The Monte Carlo method also includes a

higher-order effect, but the agreement with the linear (first order) approximation shows

that the higher-order effect is neglegible in our case.

As seen in Fig. 8, the most probable value is distributed around 1.0, but 30 samples are

insufficient to adequately represent the Gaussian distribution, although the uncertainty

reduction can be clearly seen in this figure too. It is probably possible to carry out the

PARTISN calculation for more samples within a realistic computational time, but other

neutron transport calculations, such as a Monte Carlo simulation, are very difficult to

perform so many times. This issue could become critical for many applications for which

the uncertainty quantification study is needed. Advanced techniques20 for sampling may

reproduce the Gaussian distribution with fewer samples. These techniques employ rather

more uniformly distributed random numbers than the standard random Monte Carlo

method to reduce the number of samples required to achieve a given accuracy. To apply

our Monte Carlo uncertainty quantification method to time-consuming computer codes,

advanced sampling techniques, such as quasi-Monte Carlo, need to be incorporated.

V CONCLUSION

We presented a Monte Carlo technique to perform uncertainty quantification for nuclear

applications, combining the covariance evaluation of differential cross-sections data and

the error propagation from matching the Jezebel experiment using the PARTISN neutron-

transport calculation. This technique does not address the uncertainty for a calculated

value based on the transport method used in a given calculation.

The covariance of 239Pu fission cross section was estimated from the experimental

differential data. The evaluation of 239Pu differential cross-section data was then combined

with the integral data of the Jezebel critical assembly using the Bayesian method, hence

reducing the uncertainties in the fission cross sections.
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Random samples of the fission cross sections were generated based on the covariance

matrices obtained, and distributions of the neutron multiplicity, keff , were estimated. It

was shown that the experimental uncertainty of Jezebel, which is 0.2%, was well repro-

duced by including the integral data into the covariance of 239Pu fission cross section.
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Fig. 1: Comparison of the 239Pu fission cross sections in the 30-group structure with
differential experimental data. All group averages include numerous measurements but
shown by the same symbol.

Fig. 2: RMS uncertainties in the 239Pu fission cross sections. The solid line is the result
that includes differential measurements only, the dotted line is the case in which Jezebel
integral data are added, and the dot-dashed line shows a relative sensitivity of group-cross
sections to keff value (right axis).

Fig. 3: Correlation matrix for the 239Pu fission cross sections, evaluated based on the
differential measurements only.

Fig. 4: Correlation matrix for the 239Pu fission cross sections, evaluated based on both
differential and integral data. The area surrounded by the solid rectangle has a negative
correlation.

Fig. 5: An example of Monte Carlo realization for the 239Pu fission cross sections. The
sold line indicates the unperturbed fission cross sections; the dotted and dot-dashed lines
show two random samples from the covariance matrix based on the differential data.

Fig. 6: Same as Fig. 5, but for the case in which the Jezebel integral data are included.

Fig. 7: Distributions of simulated keff prediction for Jezebel. The linear approximation
was used. The solid histogram shows the distribution of keff when the prior covariance
matrix X is used. The dotted histogram is for the posterior covariance matrix P.

Fig. 8: Distributions of calculated keff values for Jezebel with the PARTISN code. The
solid histogram shows the distribution of keff when the prior covariance matrix X is used.
The dotted histogram is for the posterior matrix P.
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Fig. 6, Combination of differential and integral . . .T. Kawano
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Fig. 7, Combination of differential and integral . . .T. Kawano

21



 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.97  0.98  0.99  1  1.01  1.02  1.03

P
ro

ba
bi

lit
y

Predicted keff for JEZEBEL

30 samples, for fission data in simulation

Using Differential Data Only
Differential and Integral Data

Fig. 8, Combination of differential and integral . . .T. Kawano
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